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ABSTRACT
The purpose of this paper is to present a novel approach to the Gaussian mixture background modeling model 
(GMM) that we call the median mixture model (MMM). The proposed method is based on the same principles as 
the GMM, but all of the background model parameters are estimated in a much more efficient way resulting in 
accelerating the algorithm by about 25% without deteriorating the modeling results. The second part of this paper 
describes a method of uniting three MMMs where three different sets of input data undergo modeling in order to 
achieve even better results. This approach called the united median mixtures is more robust to random noise as 
well as  unwanted shadows and reflections.  Both algorithms are  thoroughly tested and compared  against  the 
Gaussian mixture model, taking into consideration robustness to noise, shadows and reflections.
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1. INTRODUCTION
The  background  –  foreground  segmentation  or 
background  subtraction  is  the  first  step  in  the 
majority of the automated video surveillance systems. 
The “background” is interpreted as a set of pixels that 
have constant over time properties like, for example, 
the  color  or  the  frequency  of  intensity 
changes [Gra13a].  However,  to  remove  it,  it  is 
necessary to know how it looks like.  There are a lot 
of specialized background modeling algorithms that 
consider  different  aspects  of  the  problem.  A good 
method should be able to adapt to three fundamental 
scenery changes [Gra13a]: a change of the brightness, 
such as the sun coming out from behind the clouds, a 
continuously repeating  changes,  such  as  a  flag 
flapping in the wind and a change in the geometry, 
such as a car driving away from a parking space. The 
Gaussian mixture model (GMM) earned a label of a 
general  purpose  background modeling method as it 
considers  all  of  the  listed  scenery  changes  and  is 
known to behave well in the majority of indoor and 
outdoor  scenes.  However,  it  has  also  a  couple  of 
drawbacks  that  could  be  improved  in  future 

algorithms. The main is the lack of consideration of 
the correlation of the pixels in the image.  There is 
also space  for  improvements when it  comes to  the 
accuracy of the results. Lastly, the speed of most of 
the implementations allows the algorithm to work in 
real  time,  however  in  all  real  life  applications  the 
background – foreground segmentation is just a first 
step of processing, so speeding it up would be a great 
advantage. This paper presents two novel approaches 
to the background modeling. The first one, called the 
median mixture model, distinguishes it self by a faster 
execution  without  deterioration  of  the  results.  The 
second one, called the united median mixture, has a 
much  better  accuracy  and  robustness  to  noise  and 
distortions.  Both  of  them  are  based  on  the  same 
principles as the Gaussian mixture model, so to get 
acquainted with the idea the next part  of this paper 
describes  the most common approach to the GMM 
algorithm that was first proposed by C. Stauffer and 
W. Grimson and  is  currently  very  widely 
used [Sta99a].

2. GAUSSIAN MIXTURE MODEL
The GMM is a statistical algorithm that classifies a 
pixel  as  belonging  to  the  background  only if  it  is 
described  by  the  historical  statistics  of  the  pixels 
previously observed in the analyzed image point.
The  histogram  of  the  previously  observed  pixel 
values is modeled for every pixel independently by 
3 to 5 Gaussian distributions, hence the name of the 
algorithm – the Gaussian mixture model. Each of the 
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distributions  is  described  by  three  parameters:  the 
mean value (μ), the variance (σ2) and the weight (ω). 
The  value  for  each  of  the  parameters  is  estimated 
recursively  basing  on  the  previously  approximated 
value. Only the Gaussian distribution that describes 
the currently analyzed pixel  needs to be updated. A 
distribution describes  a  pixel  only if  the difference 
between the value of the pixel and the mean value of 
the distribution is less than 2.5σ2.  The parameters of 
such  a  distribution  are  updated  with the  following 
formulas [Sta99a]:

μ (x , y)n+1=α⋅F(x ,y)n+(1−α)⋅μ (x, y)n (1)

σ(x , y)n+1
2 =α⋅(F(x, y)n−μ(x ,y)n)

2+(1−α)⋅σ (x, y)n
2 (2)

ω(x, y)n+1=(1−α)⋅ω(x, y)n+α (3)

where:
μ (x, y)n+1 – currently approximated mean,
μ (x, y)n – previously approximated mean,
σ (x , y)n+1

2 – currently approximated variance,
σ (x , y)n

2 – previously approximated variance,
ω(x, y)n+1 – currently approximated weight,
ω(x ,y)n – previously approximated weight,
F (x, y)n – pixel from the n-th frame,
α – estimation factor, usually α∈(0.01 ,0.1) .

The remaining distributions for this pixel have their 
weights reduced according to the formula:

ω(x, y)n+1=(1−α)⋅ω(x, y)n (4)

Such an approach to the update is called “a selective 
update”,  because it  updates only those parts  of  the 
background  model  that  require  it,  preventing  the 
pollution of the model with data that belongs to the 
foreground. However,  if neither  of the distributions 
describes the analyzed pixel, the distribution with the 
lowest  weight is  replaced  with a  new one with the 
mean value equal to the pixel value, large variance 
and low weight. This way the model can adapt to the 
changes  in  the  background,  for  example  lighting 
intensity  changes  or  a  new  stationary  object 
appearance.
Only  the  distributions  with  the  highest  weights  – 
exceeding the threshold value usually equal to 0.5 – 
are  used  for  the  background  –  foreground  pixel 
classification.  If  there  is  at  least  one  distribution 
describing  the  analyzed  pixel  with  the  weight 
exceeding the threshold, then the pixel is classified as 
belonging to the background, otherwise the pixel is 
classified as a part of the foreground.
In the GMM method the classification and the model 
update  is  done  in  one  step,  which  means  that  the 
algorithm needs to loop only once through the whole 
model in order to classify all the pixels and update all 
the distributions. The outcome of the algorithm is a 

binary image with white foreground areas and a black 
background corresponding to the pixels of the input 
frame classified as belonging to the foreground and 
background respectively.
The  main  advantage  of  this  approach  is  that  it  is 
capable of modeling a rapidly changing background 
(for  example  a  flag  fluttering  in  the  wind  or  a 
flickering  light  source)  through  the  use  of  several 
Gaussian distributions  describing different  states  of 
the changing background.
The  main drawback,  as  in  many other  background 
modeling  algorithms,  is  that  it  overlooks  the 
information  about  the  location  of  the  pixel  in  the 
image  together  with  its  correlation  with  its 
neighborhood, which can be observed for example in 
the color gradient.
The results of the GMM method can be obtained in 
the real  time and are  very good in the majority of 
situations.  The noise and distortions appear  only if 
the  light  conditions  change  very  rapidly.  The 
foreground  objects  are  reproduced  quite  precisely. 
This is the reason for labeling the method as a general 
purpose background modeling algorithm.
The  next  part  of  this  paper  describes  the  median 
mixture  model  which,  as  it  was  mentioned  in  the 
introduction, is based on the same principles as the 
Gaussian mixture model,  but  all  of the background 
model  parameters  are  estimated  in  a  much  more 
efficient  manner.  This  way  we  obtain  all  the 
advantages of the GMM method along with a faster 
execution.  There  are  also  a couple  of  changes that 
make the median mixture model able to update the 
model better  and to consider  spatial  correlations of 
the pixels in the image.

3. MEDIAN MIXTURE MODEL
Similarly  to  the  GMM,  the  MMM  is  a  statistical 
method  that  classifies  a  pixel  as  belonging  to  the 
background  if  it  is  described  by  the  historical 
statistics  of  the  pixels  previously  observed  in  the 
analyzed  image  point  or  in  the  nearest  spatial 
neighborhood of that point.
The  historical  statistics  in  the  case  of  the  MMM 
approach is a bit different from the one in the GMM 
method. Each input frame pixel value is modeled by 
5  distributions.  These  distributions  have  the  same 
purpose  as  in  the  GMM  approach,  but  their 
interpretation,  as  well  as  the  parameters  estimation 
formulas are different. Instead of the mean value (μ), 
the MMM uses the median value (m) and instead of 
the variance (σ2), it uses the standard deviation (σ). 
The weight (ω) parameter has the same meaning as in 
the GMM method but a different estimation formula. 
The values of those three parameters are recursively 
approximated  basing  on  the  previously  estimated 



values. Only the distribution with the highest weight 
among all the distributions that describe the currently 
analyzed pixel needs to be updated. The parameters 
of such a distribution are updated with the following 
formulas:

m (x, y)n+1={m (x, y)n+1 for F (x , y)n>m(x, y)n
m (x, y)n−1 for F (x , y)n<m(x, y)n
m (x, y)n for F (x , y)n=m(x, y)n

(5)

σ(x , y)n+1={σ(x , y)n+1 for d(x, y)n>σ(x ,y)n

σ(x , y)n−1 for d(x, y)n<σ(x ,y)n

σ(x , y)n for d(x, y)n=σ(x ,y)n

(6)

ω(x, y)n+1={ω(x, y)n+1 for ω(x, y)n<ωmax

ωmax for ω(x, y)n≥ωmax
(7)

where: 
m (x, y)n+1 – currently estimated median,
m (x, y)n – previously estimated median,
σ(x , y)n+1 – currently estimated standard deviation,
σ(x , y)n – previously estimated standard deviation,
ω(x, y)n+1 – currently estimated weight,
ω(x ,y)n – previously estimated weight,
F (x, y)n – pixel from the n-th frame,
d(x , y)n=∣F(x ,y)n−m(x , y)n∣ – current deviation,
ωmax – maximum weight value, usually ωmax≈200 .

The formula for the median estimation is taken from 
the approximated median filtering method proposed 
by N. McFarlane and C. Schofield [McF95a].
The distributions that  do not describe  the currently 
analyzed pixel have their weights reduced according 
to the formula:

ω(x, y)n+1={ω(x, y)n−1 for ω(x, y)n>1
0 for ω(x, y)n≤1 (8)

All the other distributions remain intact – this way we 
get the selective update feature.
If the weight of any of the distributions decreases to 
zero then such a distribution is not considered in the 
calculations at all. This means that we can model the 
background  with a  dynamically  varying  number  of 
distributions – from a single distribution for the static 
background  areas  up  to  five  distributions  for  the 
dynamic parts of the background.
If neither of the distributions describes the analyzed 
pixel,  the  neighboring  distribution  mixtures  are 
checked. If  one of the nearest  neighbors contains a 
distribution that describes the analyzed pixel and its 
weight is greater than 0.5ωmax, a distribution with the 
lowest weight is replaced by a new one, with median 
value  equal  to  the  pixel  value,  large  standard 
deviation,  and  a  weight  slightly  above  the  0.5ωmax 

threshold.  If  the  check  against  the  neighborhood 

comes  out  negative,  the  weight  of  the  replacing 
distribution is set to a low value.
The  consideration  of  the  neighboring  distribution 
mixtures  makes  the  MMM  aware  of  the  spatial 
correlations  in  the  image.  This  feature  provides  a 
grater  robustness  to  noise  and  makes  it  easier  to 
discard  the  so  called  “ghost  objects”  –  groups  of 
pixels  that  were  misclassified  as  belonging  to  the 
foreground. A ghost  object  can appear for  example 
when a  car  drives  away from a  parking place  (the 
parking place may become a ghost object as it is not 
described  by  the  background  model).  The  spatial 
correlation awareness makes it possible for the model 
to adapt faster to such situations because the pixels of 
the  empty  parking  space  are  usually  spatially 
correlated  to  the pixels  of  the rest  of  the  car  park 
which is already described by the background model.
The classification rule is  the same as  in the GMM 
method, but the classification step can be carried out 
independently from the update step. This is achieved 
by dividing the update procedure into two steps. The 
first one checks only the update rules and for each 
pixel it calculates the indexes of the distributions with 
the highest  weight exceeding the threshold and the 
lowest  weight  –  this  data  will  be  needed  for  the 
second  step.  The  classification  is  conducted  along 
with  the  first  update  step,  which  means  that  the 
classification results  are  available before  the actual 
update is done. The second update step is conducted 
based on the data calculated in the first step and the 
binary classification results. Those are needed for the 
update  to  complete  because  if  neither  of  the 
distributions  describes  the  analyzed  pixel,  the 
algorithm would not have to check the neighborhood 
again as it was already done during the classification, 
so it can just use these results.
Such an approach to the background model  update 
provides  a  smart  feature  we called  “a fed update”. 
The  classification  results  can  be  slightly  changed 
before giving them to the second update step, which 
will  have  an  impact  on  the  final  state  of  the 
background  model  after  the  update  procedure  is 
completed.  This can be  used to make the selective 
update even better,  for  example a denoising of the 
classification results would teach the model that the 
removed noise should not be reported as a part of the 
foreground.  The  same can  be  done  with the  ghost 
objects  or  any  other  phenomenon  that  should  be 
classified  as  belonging  to  the  background,  but 
currently is not.
With  such  a  structure,  the  median  mixture  model 
inherits  the capability to  model  a  rapidly changing 
background from the Gaussian mixture model along 
with its other advantages. At the same time the MMM 
approach  considers  the  spatial  correlations  in  the 



image  eliminating  the  main  disadvantage  of  the 
GMM method.
The  main  drawback  of  the  described  background 
modeling  algorithm  is  that  by  itself  the  MMM  is 
more prone to noise than the GMM. However, this 
can be minimized with an appropriate use of the fed 
update feature as it is a way of teaching the model 
what is wrong with the current results.
The next part of this paper describes a background – 
foreground segmentation algorithm called the united 
median mixtures. The UMM approach makes use of 
the  features  of  the  MMM  method  by  uniting  the 
results  of  the  three  independently  working  median 
mixture  models  in  order  to  get  even  better  overall 
background modeling results.

4. UNITED MEDIAN MIXTURES
The concept behind the UMM method is much more 
general than for the previously described approaches, 
so  this  paper  presents  an  example  of  an 
implementation that uses the median mixture model 
algorithm, but it might as well be implemented with a 
different background modeling method underneath.
The  united  median  mixtures  model  structurally 
consists  of  three  independently  working  MMMs 
called  “cores”.  Each  of  the  cores  conducts  the 
background modeling using a different set  of  input 
data that come from the same input video sequence. 
A flowchart of the UMM is shown in the Figure 2.

Figure 1. Inputs of the subsequent UMM's cores: 
a – input image [PETS01a], b – color core input, 
c – difference core input, d – gradient core input.

The  first  core,  called  the  color  core,  models  the 
background simply in the color  space,  so the input 
data  goes  only  through  the  image  quality 
enhancement.  It  consists of three parts:  the median 
filter that minimizes the salt and pepper noises, the 
contrast  enhancement  and  the  saturation 
enhancement.  The  last  two  are  conducted  using 
factors  that  need  to  be  empirically  chosen 
beforehand.  Comparing to  the  raw input,  the  input 
image of the first core is sharper and has better color 
dynamics. An example of such an input data is shown 
in the Figure 1b. The modeling results of this core are 
shown in the Figure 3b and are very similar to those 

Figure 2. Flowchart of the united median mixtures algorithm
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of the MMM or GMM methods as they also model 
background in the color space.
The input of the second or the difference core is a 
difference  of  the  color  core  input  frame  and  the 
estimated background frame. The background frame 
is  estimated  at  the  very  end  of  the  loop  of  the 
algorithm by coping to the background accumulator 
only those pixels of the currently analyzed frame that 
were classified as belonging to the background. All 
the other pixels that were held in the accumulator stay 
intact.  This  way  the  estimated  background  frame 
always  contains  the  most  recent  background  look. 
Usually, the input image of the difference core looks 
as if the static background was erased and everything 
that  is  left  has distorted colors.  An example of the 
input  data  for  the  second  core  is  shown  in  the 
Figure 1c.  The  modeling  results  of  this  core  are 
shown in the Figure 3c and are similar to those of the 
first  one  –  the  biggest  differences  occur  in  the 
distribution of the noise.

Figure 3. Outputs of the subsequent UMM's 
cores: a – input image [PETS01a], b – color core 
output, c – difference core output, d – gradient 

core output.
In order to join the results of the first two cores it is 
enough to calculate the logical conjunction of them as 
they are both in a binary form – white foreground and 
black  background.  The  resulting  difference-color 
image  contain  much  less  noise  as  the  logical 
conjunction preserves only those values that occur in 
both operands.
The third core, called the gradient core, models the 
background  in  the  image  gradient  space.  Its  input 
data is calculated from the color core input data by 
the  vector  directional  gradient  algorithm  (VDG) 
[Luk06a].  An  example  of  the  input  data  for  the 
gradient  core  is  shown  in  the  Figure  1d.  The 
modeling  results  of  this  core  are  shown  in  the 
Figure 3d and they contain only the contours of the 
foreground  objects.  Those  contours  do  not  include 
shadows  or  reflections  that  occurred  in  the  input 

image because those phenomena usually do not have 
sharp edges – their color gradient is relatively small.
Joining the third core results with the results of the 
other  two  cores  leads  to  the  elimination  of  the 
shadows and reflection areas misclassified by the first 
two cores as belonging to the foreground. The joining 
procedure consists of three steps:

• Gradient results  filtration – filtering the gradient 
core results using a median filter and then using 
the filtered image as a marker image for the binary 
morphological  reconstruction  by  dilation 
[Vin93a].  This  two  phase  filtering  approach 
removes all  the noise  the median filter  removed 
and does not deteriorate the shape of the non noise 
objects  by reconstructing them from the  filtered 
image.

• Finding contours of the areas left after filtration – 
this step consists of a couple of sub-steps: dilating 
the filtered image, finding contours of the objects 
from the dilated image using the border following 
algorithm [Suz85a],  finding  convex  hulls  of  the 
contours  using  the  Sklansky algorithm [Skl82a], 
connecting the closely lying convex hulls with four 
iterations  of  the  binary  morphological  close 
operation, and finally, finding convex hulls of the 
contours of the objects from the morphologically 
closed image. The result after performing all the 
sub-steps is  a  gradient  contour image containing 
only the contours of the objects after the filtration.

• Separation  and  removal  of  the  shadows  and 
reflections areas from the difference-color image – 
closing the holes in a difference-color image with 
four iterations of the binary morphological  close 
by reconstruction, separation of the shadows and 
reflections  by  subtracting  the  gradient  contour 
image from the closed difference-color image and 
finally  removing  the  separated  shadows  and 
reflections using the filtered gradient image as the 
marker  image  for  the  binary  morphological 
reconstruction  by  dilation  of  the  image  with 
separated shadows and reflections.

The resulting difference-color joined image contains 
the  objects  from  the  difference-color  image,  less 
noise and no shadows or reflections areas.
After uniting the modeling results of all of the three 
cores, a final median filtering with a morphological 
reconstruction  by dilation  is  conducted  in  order  to 
eliminate any remaining noise, not deteriorating the 
shapes of the found objects.
Finally,  the  first  two  cores  are  updated  with  the 
filtered united results and the gradient core is updated 
with the filtered gradient results using the fed update 
feature.  This  way the  cores  are  taught  that  all  the 
foreground pixels that were removed from or added 



to their original results were misclassified and from 
now on they should be recognized correctly,  which 
means that the final UMM result designate the correct 
classification result for the cores.
The  united  median  mixtures  method  gives  better 
results than the previously described  algorithms. In 
particular,  the UMM method is more accurate than 
the  GMM  method.  The  final  results  contain 
practically  no  noise  at  all  and  the  shapes  of  the 
foreground objects are more complete. Thanks to the 
analysis of the gradient data the algorithm manages 
also  to  reduce  the  impact  of  the  shadows  and 
reflections on the final modeling results.
The  main  drawback  of  the  current  united  median 
mixtures method implementation is its speed. The run 
time of the algorithm is about 5 to 7 times longer than 
for the median mixture model approach and about 3.5 
to 6 times longer than for the GMM method. There 
are two reasons for that. The first one is the fact that 
the  run  time length depends  on the  number of  the 
foreground objects  in  the currently analyzed  scene. 
The more foreground objects there are, the more time 
consuming calculations the algorithm has to conduct. 
To be precise, the calculations in question are related 
to the removal of the shadows and reflections. Such a 
dependency does not occur neither in the MMM nor 
in the GMM.
The  second  reason  for  the  long  run  time  of  the 
described  UMM  method  is  the  fact  that  the 
implementation is still work in progress so there are a 
lot of additions to the code that make it possible to 
see and analyze the partial results of the algorithm. 
However,  the  main  problem  of  the  current 
implementation  is  that  although  each  core  works 
independently  from  the  remaining  ones,  they  are 
started sequentially, which means that their run times 
sum up, whereas they should be run in parallel,  for 
example,  on  a  different  threads.  This  way the  run 
time of all the cores would take up only as much as 
the run time of the slowest one.
The next part of this paper summarizes the results of 
the  test  and  experiments  that  were  conduced  after 
implementing all of the described algorithms.

5. RESULTS
Comparative tests of the median mixture model and 
the  Gaussian  mixture  model  methods  proved  the 
initial assumptions to be correct. The results of both 
approaches are  very similar  in terms of  the quality 
and  accuracy  and  are  obtainable  in  the  real  time. 
Figure 4 shows an outdoor scene with three moving 
objects – two pedestrians and one cyclist [PETS01a]. 
All of them should be recognized as belonging to the 
foreground and both algorithms managed to do that 
very well. Although the proposed approach is more 

prone to noise than the GMM method, in this case 
results  of  both  algorithms  are  almost  identical. 
However,  the  median mixture model  is  about  25% 
faster than the Gaussian mixture model, which makes 
it  possible  to  model  greater  resolution  video 
sequences  or  to  add  additional  processing  to  the 
background modeling pipeline without compromising 
the possibility to work in the real time.

Figure 4. Comparison of the Gaussian mixture 
model and the median mixture model.

As  it  was  mentioned  before,  the  united  median 
mixtures model gives even better results in terms of 
quality  and  accuracy  than  the  Gaussian  mixture 
model or the median mixture model.  Figures 5 – 9 
show  and  compare  the  behavior  of  all  three 
approaches in different modeling conditions.

Figure 5. Comparison of all three methods in an 
extreme situation – lots of reflections, from top 
left: input image, the results of the GMM, the 
results of the MMM, the results of the UMM.

Figure 5 shows a comparison of all three methods in 
an  extreme  situation,  when  there  are  a  lot  of 
reflections in the scene caused by the headlights of 
the passing cars. In this particular situation, the GMM 
method misclassified the reflections that occurred on 
the road  and on the pavement.  The MMM method 
gave  slightly  better  results  –  less  reflections  were 
misclassified due to the spatial correlation awareness 



of this approach. The UMM's results are undoubtedly 
the best. There is only a very small fragment of the 
headlights reflection misclassified just in front of one 
of the cars, where the intensity of the reflection was 
the  highest.  Moreover,  the  shapes  of  both  cars 
recognized by the united median mixtures model are 
more complete and accurate than for the other  two 
algorithms.

Figure 6. Comparison of all three methods in 
extreme situations – sudden light change, from top 

left: input image, the results of the GMM, the 
results of the MMM, the results of the UMM.

Figure  6  shows the  input  scene  and  the  modeling 
results  just  after  a  sudden  increase  of  the  light 
intensity. The change caused all parts of the scene to 
become brighter, however it was the most noticeable 
in already bright areas like the wall of the building or 
the lines on the street. Those parts were misclassified 
by both the GMM and the MMM methods, whereas 
the UMM method did very well in this situation – it 
misclassified  only one  small  spot  corresponding to 
the brightest  part  of  the wall.  The  UMM approach 
has  also  recognized  the  shape  of  a  passing  car  as 
more complete than the two other algorithms.

Figure 7. Comparison of all three methods in 
extreme situations – reflection and 5 people, from 
top left: input image, the results of the GMM, the 

results of the MMM, the results of the UMM.

Figure 7 shows the input scene with a huge reflection 
just  in  the  middle  of  the  image  caused  by  the 
headlights of a passing car. Besides the car there are 
also three people localized around the reflection and 
two  people  in  the  back.  Both  the  GMM  and  the 
MMM  methods  recognized  all  those  six  moving 
objects  correctly,  but  unfortunately neither  of  them 
managed to classify the reflection area correctly. On 
the  other  hand,  the  UMM  method  managed  the 
reflection area very well, but it also filtered out two 
smallest  objects,  probably  considering  them  as  a 
noise.

Figure 8. Comparison of all three methods in 
extreme situations – reflection and 3 people, from 
top left: input image, the results of the GMM, the 

results of the MMM, the results of the UMM.
Figure 8 shows the input scene similar to previously 
described  scene  from  Figure  7.  Three  people  are 
walking  on  the  pavement  and  the  headlights  of  a 
passing car cause a reflection on the street. Although 
this time all three algorithms recognized the moving 
objects very well, only the UMM method managed 
the reflection area correctly.

Figure 9. Comparison of all three methods in 
extreme situations – huge reflection and a fast 
moving cyclist, from top left: input image, the 

results of the GMM, the results of the MMM, the 
results of the UMM.



Figure 9 shows yet another input scene with a huge 
reflection in the middle caused by the headlights of a 
passing car. This scene contains also a cyclist who is 
moving  very  fast  towards  the  pedestrian  crossing. 
Similarly to the previously described situations only 
the  united  median  mixtures  model  managed  to 
classify the reflection area correctly. Moreover in this 
particular situation the UMM method recognized the 
shapes  of  the  passing  car  and  the  cyclist  more 
precisely  than  the  Gaussian  mixture  model  or  the 
median  mixture  model  despite  the  blur  of  those 
objects caused by their speed.
Generally,  the  conducted  tests  and  experiments 
confirmed  all  the  assumptions  about  the  high 
processing speed of the median mixtures model and 
the  very  good  quality  and  accuracy  of  the  united 
median mixtures model.

6. CONCLUSION
The  novel  approaches  to  the  background  – 
foreground  segmentation  described  in  this  paper 
closely rely on each other.  As a matter of fact,  the 
concept  of uniting the background modeling results 
of  different  data  sources  came  up  first  and  then  a 
need  for  a  fast  and  robust  background  modeling 
algorithm emerged as it was necessary for the cores 
of  the united model.  A deep  survey of  the present 
solutions for the problem [Gra13a] led to a choice of 
the Gaussian mixture model as the archetype of the 
core  algorithm.  It  was  chosen  because  of  its 
robustness  and  a  broad  spectrum  of  applications, 
which means it would not need special conditions to 
work correctly.  From there it was all about making 
the  algorithm  faster,  not  loosing  those  two  key 
features along the way. The result of that effort is the 
median mixture model.
Having the MMM as a fine candidate for the cores, it 
was  possible  to  test  the  concept  of  uniting  their 
results together. The specific solutions for joining the 
results of the cores were developed by an extensive 
testing and experimenting with different approaches. 
The methods that performed the best are the ones that 
are described in this paper.
The final shape of both the MMM and the UMM met 
the  expectations.  The  median  mixture  model  is  as 
robust  to  noise  and  distortions  as  the  Gaussian 
mixture model with much shorter run time. There is 
about 25% time gain compared to the GMM, which 
means that if for a certain video sequence the GMM 
method has about 20FPS, the MMM method would 
have almost 30FPS for the same video sequence.
The  united  median mixtures  is  still,  as  it  was said 
before, work in progress hence the run times of the 
implementation in the tests. However, the results are 

very  good  compared  to  both  the  GMM  and  the 
MMM methods.  In  most  cases  the  UMM is  more 
precise  in  determining  the  final  shapes  of  the 
foreground objects. The recognized shapes are more 
complete than in the other two methods. Although the 
normal  spot  noise  and distortions do  not  have  any 
impact  on  the  final  modeling  results  of  all  three 
approaches, the UMM method behave a lot better in 
deteriorated conditions when there are sudden light 
changes and intensifying noises or distortions. Such a 
resistance  to  noise  sometimes  effects  in  not 
recognizing the foreground objects that are to small – 
they are simply considered to be noise.
The  further  work needs  to  focus on  improving the 
united median mixtures model implementation. As it 
was  already  mentioned,  the  main  drawback  of  the 
approach is its run time. The conducted experiments 
show that the biggest improvement can be made by 
paralleling  the  independent  code  parts.  The  best 
example  for  this  are  the  cores  that  currently work 
sequentially.  Excluding  the  unnecessary  code  and 
making the rest of the implementation more efficient 
would  also  noticeably  influence  the  run  time. 
Summing  up,  the  final  results  are  more  than 
satisfactory, but there is still more work to do.
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